I’m fixing my fourth-order differential equation through the use of DSolve. After I solved the equation it provides me an error associated to precision. How can I enhance my outcomes and get higher output? Any assist might be appreciated.

```
t = 1/10; Da = 10^-4; [Epsilon] = 9/10; ok = 10; Bi = 1/10; Br = 10;
A0 = Sqrt[[Epsilon]]/Sqrt[Da];
A1 = Da + t^2/2 - Da Sech[(-1 + t)*A0] - (Sqrt[Da] t Tanh[(-1 + t)*A0])/[Epsilon]^(3/2);
A2 = (Sqrt[Da] Sech[(-1 + t)*A0] (-t Cosh[A0] + Sqrt[Da] [Epsilon]^(3/2) Sinh[t A0]))/[Epsilon]^(3/2);
A3 = -((Sqrt[Da] Sech[(-1 + t)*A0] (Sqrt[Da] [Epsilon]^(3/2) Cosh[t A0] - t Sinh[A0]))/[Epsilon]^(3/2));
A6 = (Bi*(1 + ok))/ok;
Uc = -(Y^2/2) + A1;
Upm = A2*Sinh[Y*A0] + A3*Cosh[Y*A0] + Da;
Um = FullSimplify[Integrate[Uc, {Y, 0, t}] + Combine[Upm, {Y, t, 1}]];
B1 = 1/(12 A0 Um^2 [Epsilon]) (-6 A0^3 (A2 - A3) (A2 + A3) Br Da (-1 + t) + 2 A0 (Three A2^2 Br (-1 + t) - Three A3^2 Br (-1 + t) + 2 Br Da (Three Da - Three Da t + t^3) + 6 Um^2) [Epsilon] + Three Br (-Eight A2 Da [Epsilon] Cosh[A0 t] - 2 A2 A3 (A0^2 Da + [Epsilon]) Cosh[2 A0 t] + 2 (A2 Cosh[A0] + A3 Sinh[A0]) (Four Da [Epsilon] + (A0^2 Da + [Epsilon]) (A3 Cosh[A0] + A2 Sinh[A0])) - Eight A3 Da [Epsilon] Sinh[A0 t] - (A2^2 + A3^2) (A0^2 Da + [Epsilon]) Sinh[2 A0 t]));
B2 = -((2 Br Da t^3 + B1 t (-6 A1 + t^2) Um)/(6 Um^2));
B3 = -((A0^2 Br Da (A2 Cosh[A0] + A3 Sinh[A0])^2)/(ok Um^2 [Epsilon]));
B4 = (B1 Um (Da + A3 Cosh[A0 t] + A2 Sinh[A0 t]) - Br (Da + A3 Cosh[A0 t] + A2 Sinh[A0 t])^2 - (A0^2 Br Da (A2 Cosh[A0 t] + A3 Sinh[A0 t])^2)/[Epsilon])/(ok Um^2);
eqn1 = X''''[Y] - A6*X''[Y] + (B1*Bi)/(ok*Um)*(A2*Sinh[Y*A0] + A3*Cosh[Y*A0] + Da) - B1/(ok*Um)*(A0^2 (A3 Cosh[A0 Y] + A2 Sinh[A0 Y])) - (Bi*Br)/(ok*Um^2)*((A2*Sinh[Y*A0] + A3*Cosh[Y*A0] + Da)^2 + Da/[Epsilon]*(A0 (A2 Cosh[A0 Y] + A3 Sinh[A0 Y]))^2) + Br/(Um^2*ok)*(2 A0^2 ((A2^2 + A3^2) Cosh[2 A0 Y] + A2 Da Sinh[A0 Y] + A3 Cosh[A0 Y] (Da + Four A2 Sinh[A0 Y])) + Da/[Epsilon]*(2 A0^4 ((A2^2 + A3^2) Cosh[2 A0 Y] + 2 A2 A3 Sinh[2 A0 Y]))) == 0;
eqn2 = Z''''[Y] - A6*Z''[Y] + (B1*Bi)/(ok*Um)*(A2*Sinh[Y*A0] + A3*Cosh[Y*A0] + Da) - (Bi*Br)/(ok*Um^2)*((A2*Sinh[Y*A0] + A3*Cosh[Y*A0] + Da)^2 + Da/[Epsilon]*(A0 (A2 Cosh[A0 Y] + A3 Sinh[A0 Y]))^2) == 0;
system = {eqn1, eqn2, X''[1] == B3, Z''[1] == 0, ok*X'[1] + Z'[1] == 1,X[1] == Z[1], X[t] == 0, Z[t] == 0, X''[t] == B4, Z''[t] == 0 };
{solX, solY} = DSolveValue[system, {X[Y], Z[Y]}, Y]; // Simplify
f = Desk[N[solX[Y], 16], {Y, 1/10, 1, 1/100}
```

I get this error.

```
Inner precision restrict $MaxExtraPrecision = 50.` reached
```