By the next code, we generate Tp1:
tempPV = (
Three π^(2/3) + 6 6^(2/3) P π V^(2/3) -
6^(2/3) V^(
2/3) (-3 + Sqrt[
9 + (4 6^(2/3) π^(4/3) q^2)/(
V^(4/3) β^2)]) β^2 +
Three 6^(2/3) V^(
2/3) β^2 Log[
1/6 (3 + Sqrt[
9 + (4 6^(2/3) π^(4/3) q^2)/(V^(4/3) β^2)])])/(
6 6^(1/3) π^(4/3) V^(1/3));
βin = 0.01;
βfi = 100;
βst = 0.005;
Desk[
xlog[β] = Log[10, β]
, {β, βin, βfi, βst}];
parap1 = {q -> 0.1, V4 -> 5000};
parap2 = {T2 -> 15, q -> 0.1, V2 -> 10000};
parap4 = {T4 -> 5, q -> 0.1, V4 -> 5000};
Desk[
pressp2[β] =
P /. Clear up[(tempPV - T2 == 0) /. V -> V2 /. parap2, P][[1]];(*p1=
p2*)
pressp4[β] =
P /. Clear up[(tempPV - T4 == 0) /. V -> V4 /. parap4, P][[1]];(*p3=
p4*)
Tp1[β] =
T1 /. Clear up[(tempPV - T1 == 0) /. V -> V4 /. parap1 /.
P -> pressp2[β], T1][[1]];
, {β, βin, βfi, βst}];
mi = Min[Table[Tp1[β], {β, βin, βfi, βst}]]
ma = Max[Table[Tp1[β], {β, βin, βfi, βst}]]
ListPlot[
Table[{xlog[β], Tp1[β]}, {β, βin, βfi, βst}],
ScalingFunctions -> {Rescale[#, {mi, ma}, {0.`, 1.`}] &,
Rescale[#, {0.`, 1.`}, {mi, ma}] &}, Joined -> True, Body -> True,
FrameStyle -> Black,
BaseStyle -> {FontSize -> 14, PrintPrecision -> 11},
FrameLabel -> {"!(*SubscriptBox[(log), (10)]) (β)",
"!(*SubscriptBox[(T), (1)])"}, RotateLabel -> False,
PlotStyle -> {Blue, Thickness[0.006]},
PlotRange -> {{-2, 2}, {mi, ma}}, Axes -> None, AspectRatio -> 0.8,
ImageSize -> 400, FrameTicks -> {{ticks, None}, {Automated, None}}]
The result’s the next plot:
There’s a unusual fluctuation for $log_{10}^{beta}=1-2$. Correctly a easily lowering operate, what’s the origin of those fluctuations? Easy methods to repair this probably numerical error?